Перекрестное опыление. определение, описание, особенности, этапы и виды

Содержание:

Процесс самоопыления

Полноценное опыление растений неспроста считается залогом высокой урожайности томатов. Именно этот этап вегетации считается ключевым, поскольку именно опыление приводит к формированию завязей, из которых в итоге вырастают плоды.

Как определить, опыляются растения сами или им требуется помощь? Очень просто: опыленный цветок отводит свои лепестки назад. Если подобного не наблюдается, садовод обязан помочь растению и создать ему подходящие условия для нормального плодоношения.

Способы естественного опыления

Есть три способа опыления кустов томатов, растущих на балконе, веранде или в теплице:

  1. Привлечь насекомых-опылителей поможет опрыскивание завязей сахарным раствором.
  2. Для томатов, которые растут в парнике, создают естественные условия роста. К процессу опыления привлекают насекомых. В парнике для них сажают цветы, а в междурядья ставят сладкую воду. Высаженные рядом с томатами базилик или бархатцы, привлекут пчел и дополнительно повысят вкусовые качества плодов.
  3. Если погода жаркая и ветреная, помещение проветривают. Ветер способствует естественному процессу опыления. Откройте два окна на противоположных стенах строения и создайте сквозняк.

На заметку. Привлечение шмелей повышает урожайность на 30-40%. Не случайно этих насекомых используют в современных промышленных теплицах.

Описание механизма

Цветковые растения получили своё название, потому что имеют морфологический орган — цветок, способный к половому размножению и привлечению опылителей. Для образования завязей, формирования плодов и развития семян первым условием является опыление, то есть перенос частиц пыльцы. Природа позаботилась о том, чтобы всё проходило успешно.

Это может осуществляться ветром — тогда целые облака невесомых пылинок поднимаются и передвигаются в потоках зефира. Многие деревья (дубы, ясени и сосны), сельскохозяйственные злаковые и кукуруза «заботятся» об увеличении вероятности попадания на нужные рыльца, вырабатывая заведомо большие количества пыльцы. Её частички очень лёгкие, почти невесомые, чтобы беспрепятственно «проплывать» по воздуху, а у некоторых имеются газовые пузырьки, способствующие более долгому путешествию.

Но чаще всего опыление осуществляют разные насекомые

Чтобы привлечь внимание, растения окрашиваются в очень яркие цвета и источают сильный аромат. Если их размеры малы, они группируются в пышные соцветия или окружают себя разноцветными листьями — прицветником, как это делает мексиканская красавица пуансеттия

По сравнению с теми, что опыляются ветром, пыльцевые зёрна таких цветов обычно более крупные, шероховатые и клейкие, чтобы уверенно прилипать к насекомым.

Для привлечения опылителей медовые железы растений специально выделяют нектар — сок, богатый различными сахарами (в основном это сахароза и фруктоза). Кроме того, в состав входят:

  • кислоты (аспарагиновая и глютаминовая);
  • минеральные соли;
  • ферменты;
  • ароматические компоненты.

Осы, бабочки и шмели охотно употребляют нектар в пищу. Медоносные пчёлы, собирая и пряча его в соты улья, производят мёд. Акации специально выделяют сладкий секрет для привлечения муравьёв, защищающих древесину от зубов травоядных животных. Спектр опылителей может быть широким (эуфилия), подчиняться опылению несколькими родственными или только определённой жизненной формой (олигофилия) или требовать один вид насекомых (монофилия).

Если говорят, что опылитель обладает полилектией, это свидетельствует о чрезвычайно высоком уровне приспособленности к опылению, он способен обслуживать представителей различных семейств. Посещение ограниченной группы, состоящей из одного семейства или растений с однотипными соцветиями, свидетельствует о наличии олиголектии. В случае монолектии опылитель обязательно питается одним видом или родом растений и опыляет только их.

После этого наступает очередь оплодотворения, которое происходит у всех по-разному: чаще период длится несколько недель, но иногда для полноценного слияния половых клеток требуются месяцы. Пыльца, находящаяся на рыльце, для этого должна созреть, обладать достаточной жизнестойкостью и иметь сформированный женский гаметофит (зародышевый мешок). В него и проникает пыльцевая трубка, растущая в направлении завязи через семенной зачаток.

Оказавшись возле яйцеклетки, она спешит разорваться и высвободить два спермия: один соединяется с яйцеклеткой и даёт жизнь зародышу, второй сливается с диплоидным ядром, образуя триплоидную клетку и формируя эндосперм. Такое двойное оплодотворение позволяет получить семя, защищённое кожурой, а из завязи затем возникнет желанный плод.

Как создать благоприятные для опыления условия

Опыление томатов в закрытом грунте возможно только при создании оптимальных условий. Что требуется:

  • не использовать слабый, гибридный или некачественный семенной материал;
  • удобрять кусты во время цветения, избегая переизбытка азота и органики (навоз, помет), которые способствуют росту зелёной массы и уменьшению цветения;
  • не уменьшать и не увеличивать температуру, следить за освещением.

Количество завязей снижается и в том случае, если куст сформирован неправильно, на нём большое число бутонов, потребляющих питательные компоненты.

Чтобы не терять львиную долю урожая, кусты томатов должны выращиваться с соблюдением таких правил:

  1. Температура выше +13 градусов (оптимально +16…+18). Если она снижается, вызреваемость пыльцы падает на 50 %.Если температура выше +35 градусов, пыльца не созревает совсем.
  2. Влажность должна поддерживаться на уровне 70 %. В сухом воздухе пыльца не попадет в цветки, а при высокой влажности она становится липкой и не может отсыпаться.

В теплице из поликарбоната или другого материала должно быть качественное освещение. В темноте даже крепкие завязи не принесут плодов.

Примеры видов

Эволюционный переход от ауткроссинга к самооплодотворению — один из наиболее распространенных эволюционных переходов у растений. Около 10-15% цветковых растений преимущественно самоопыляющиеся. Ниже описаны несколько хорошо изученных примеров самоопыляющихся видов.

Орхидеи

Самоопыление у орхидеи-башмачка Paphiopedilum parishii происходит, когда пыльник переходит из твердого состояния в жидкое и непосредственно контактирует с поверхностью рыльца без помощи каких-либо опылителей.

У древесной орхидеи Holcoglossum amesianum есть тип механизма самоопыления, при котором двуполый цветок поворачивает свой пыльник против силы тяжести на 360 °, чтобы поместить пыльцу в свою собственную полость рыльца — без помощи какого-либо опылителя или среды. Этот тип самоопыления, по-видимому, является адаптацией к безветренным засушливым условиям, которые присутствуют во время цветения, когда насекомых мало. Без опылителей для ауткроссинга необходимость обеспечения репродуктивного успеха перевешивает потенциальные неблагоприятные последствия инбридинга. Такая адаптация может быть широко распространена среди в аналогичной среде.

Самоопыление мадагаскарской орхидеи Bulbophyllum bicoloratum происходит благодаря ростеллуму, который, возможно, восстановил свою стигматическую функцию как часть дистальной средней стигматической доли.

Caulokaempferia coenobialis

У китайского растения Caulokaempferia coenobialis пленка пыльцы переносится из пыльника (пыльцевых мешочков) маслянистой эмульсией, которая скользит боком вдоль стебля цветка и попадает в собственное рыльце человека. Поперечный поток пленки пыльцы по стилю, по-видимому, обусловлен исключительно растекающимися свойствами маслянистой эмульсии, а не силой тяжести. Эта стратегия могла развиться, чтобы справиться с нехваткой опылителей в чрезвычайно тенистых и влажных местах обитания C. coenobialis .

Capsella краснуха

Capsella rubella (кошелек Red Shepard) — это самоопыляющийся вид, который стал самосовместимым от 50 000 до 100 000 лет назад, что указывает на то, что самоопыление является эволюционной адаптацией, которая может сохраняться на протяжении многих поколений. Его предок от скрещивания был идентифицирован как Capsella grandiflora .

Arabidopsis thaliana

Arabidopsis thaliana — это преимущественно самоопыляющееся растение с показателем ауткроссинга в дикой природе, по оценкам, менее 0,3%. Исследование показало, что самоопыление возникло примерно миллион лет назад или более.

Процесс опыления ветром

Распространение ветром пыльцы вряд ли можно считать управляемым процессом. Поэтому вероятность того, что зерна попадут на рыльца собственных цветов, достаточно велика. Самоопыление, как известно, для таких растений нежелательно, в связи с чем у цветов широко развились различные приспособления, которые этому препятствуют. Так, чаще всего рыльца и пыльники созревают не одновременно. По той же причине у некоторых ветроопыляемых культур раздельнополые цветы.

На схеме ветроопыление у злака

Большая часть деревьев, опыляемых описываемым образом, цветет в начале весны, т. е. до распускания листвы – это также является приспособлением, препятствующим самоопылению.

Самоопыление

Особенно ярко это выражается у орешника и березы. И неудивительно, ведь густые листья были бы серьезным препятствием на пути движущихся пыльцевых зерен.

Пыльца березы

Стоит упомянуть и об остальных приспособлениях. Тычинки большинства злаковых растений начинают очень быстро расти при раскрывании цветов, причем скорость роста может достигать 1-1,5 мм/мин. Спустя время длина тычинок в три-четыре раза превышает изначальную, они выходят за пределы цветка и свешиваются вниз. И лишь после того, как пылинки оказываются снизу, они растрескиваются. При этом сам пыльник слегка изгибается, образуя своего рода чашу, куда пыльца и ссыпается. Как результат – зерна не падают на землю, а спокойно ждут порыва ветра, чтобы покинуть пыльник.

Также положение соцветия может меняться у граба, тополя и березы. Поначалу соцветия «смотрят» вверх, но перед раскрыванием пыльников стержень сережки выдвигается, а сами они (соцветия) свешиваются. Цветки отдаляются друг от друга и вместе с тем становятся доступными для ветра. Пыльцевые зерна падают на чешуйки нижних цветков, откуда и сдуваются.

Тополь черный, схема

У некоторых анемофильных растений (по аналогии с энтомофильными) имеются «взрывчатые» цветки. Так, у одной из разновидностей крапивы тычинки в период созревания напрягаются настолько, что после раскрывания резко расправляются и избавляются от зерен лопнувших пыльников. В такие моменты над цветками наблюдаются густые облачка пыльцы.

Цветение крапивы

Также отметим, что пыльца ветроопыляемых культур может рассыпаться не всегда, а лишь при условии благоприятной погоды. На улице должно быть относительно сухо, ветер должен быть слабым или средним. Зачастую для опыления больше всего подходят утренние часы.

Опыление облепихи

Способы опыления томатов и других пасленовых ↑

К основным культурам семейства пасленовых, выращиваемых в придомовых хозяйствах и дачах, относятся помидоры, перец сладкий, баклажаны. В открытом грунте самоопыляемым растениям помидоров помогают ветер, пчелы и др. Сложнее в теплице, особенно при круглогодичном выращивании помидоров, да и других овощных культур в закрытом помещении. Для успешного искусственного опыления нужны несколько условий, изменение которых может привести к потере урожая.

  • Температура воздуха в пределах +15..+20-25 °С. Более низкая температура вызывает деформацию пыльцы, а выше +30 °С – стерилизует.
  • Во время проведения опыления влажность воздуха в теплице не должна превышать 70%. Нужен сухой воздух, чтобы пыльца могла преодолеть большие расстояния. Во влажном состоянии она становится тяжелой, слипается и не способна сыграть свою роль при оплодотворении.

Цветок помидора

Искусственное опыление проводят встряхиванием цветочных кистей, через 3-4-5 дней в солнечную погоду или при оптимальном освещении. После оседания пыльцы проводят легкое опрыскивание цветков теплой водой. Прием необходим для лучшего прорастания пыльцы, попавшей на рыльце пестика. Через пару часов после опрыскивания теплицу проветривают (без сквозняков), для нормализации влажности окружающей среды (почвы и воздуха). По такому же типу проводят искусственное опыление и других культур этого семейства.

Вхождение

Немногие растения самоопыляются без помощи переносчиков пыльцы (например, ветра или насекомых). Этот механизм чаще всего встречается в некоторых бобовых, таких как арахис . У другого бобового растения , сои , цветы раскрываются и остаются восприимчивыми к перекрестному опылению насекомыми в течение дня. Если этого не сделать, цветки самоопыляются при закрытии. Среди других растений, способных к самоопылению, есть много видов орхидей , гороха , подсолнечника и тридакса . Большинство самоопыляющихся растений имеют небольшие, относительно незаметные цветки, которые выделяют пыльцу прямо на рыльце, иногда даже до того, как распустится бутон. Самоопыляющиеся растения тратят меньше энергии на производство аттрактантов опылителей и могут расти в районах, где насекомые или другие животные, которые могут их посещать, отсутствуют или очень малочисленны — например, в Арктике или на больших высотах.

Самоопыление ограничивает разнообразие потомства и может снизить жизнеспособность растений . Однако самоопыление может быть полезным, позволяя растениям распространяться за пределы диапазона подходящих опылителей или производить потомство в районах, где популяции опылителей значительно сократились или изменчивы в естественных условиях.

Опыление можно также осуществить перекрестным опылением . Перекрестное опыление — это перенос пыльцы ветром или животными, такими как насекомые и птицы, от пыльника к рыльцу цветов на отдельных растениях.

Опыление

Типы и способы опыления (А. Н. Пономарев, Е. И. Демьянова)

Опыление — необходимое условие для процесса оплодотворения, протекающего в цветке. Пыльца из пыльников так или иначе переносится на рыльце цветка. Различают два типа опыления — самоопыление и перекрестное опыление (ксеногамия) и несколько способов опыления. Если пыльца переносится в пределах данного цветка или данной особи, то в этом случае происходит самоопыление. Различают разные формы самоопыления: автогамию, когда рыльце опыляется пыльцой того же цветка, гейтоногамию (соседственное опыление), когда рыльце опыляется пыльцой других цветков той же особи, и, наконец, клейстогамию, когда самоопыление происходит в закрытых, нераспускающихся цветках. Эти разные формы самоопыления в генетическом отношении вполне равноценны.

Если перенос пыльцы осуществляется между цветками разных особей, то в этом случае происходит перекрестное опыление. Перекрестное опыление — основной тип опыления цветковых растений. Он свойствен подавляющему большинству их.

В цветках весьма обычны специальные устройства морфологического и физиологического характера, предотвращающие или по крайней мере ограничивающие самоопыление. Таковы двудомность, дихогамия, самонесовместимость, гетеростилия и др. Однако в них имеются также приспособления к самоопылению, способствующие последнему в том случае, когда перекрестное опыление по каким-либо причинам не произойдет. Иначе говоря, цветок допускает возможность не только перекрестного опыления^ но и самоопыления.

Перекрестное опыление осуществляется следующими способами: с помощью насекомых (энтомофилия), птиц (орнитофилия), летучих мышей (хироптерофилия) или агентов неживой природы — ветра (анемофилия) и воды (гидрофилия). В соответствии с этим можно говорить о биотическом и абиотическом опылении.

Перекрестное опыление обусловливает обмен генами и интеграцию мутаций, поддерживает высокий уровень гетерозиготности популяции, определяет единство и целостность вида. Это создает широкое поле для деятельности естественного отбора.

Самоопыление, особенно постоянное, рассматривается как вторичное явление, вызванное крайними условиями среды, неблагоприятными для перекрестного опыления. Оно выполняет тогда страхующую функцию. Постоянное самоопыление трактуется как тупик эволюционного развития. В этом случае происходит расщепление вида на серию чистых линий и затухание процессов микроэволюции. В этой правильной, но односторонней точке зрения на эволюционное значение самоопыления нашла отражение идея Дарвина, что «природа питает отвращение к постоянному самооплодотворению». Этот афоризм, как указывал сам Ч. Дарвин (1876), будет ошибочным, если исключить из него слово «постоянному». Указав на вредное действие постоянного самоопыления, Дарвин отнюдь не отрицал его значения вообще. В «Автобиографии» (1887) он писал: «Мне следовало решительнее, чем я это сделал, настаивать на существовании многочисленных приспособлений к самоопылению».

Отрицательное значение для эволюции постоянного самоопыления не вызывает сомнений. Однако из работ Дарвина отнюдь не вытекает, что самоопыление всегда имеет отрицательные последствия. По современным представлениям, для прогрессивной эволюции необходимо как свободное скрещивание, так и некоторое ограничение его. Перекрестное опыление повышает уровень гетерозиготности в популяции, а самоопыление, наоборот, вызывает гомозиготизацию ее. Самоопыление влечет за собой в сущности изоляцию новых форм, т. е. обособляет и фиксирует в чистых линиях благоприятные результаты предшествующего перекрестного опыления. В этом и заключается положительное значение для эволюции сочетания в ряду поколений самоопыления и перекрестного опыления.

Обоеполость и энтомофильность цветка представляют первичное явление. В цветках первых покрытосеменных наряду с весьма примитивной энтомофилией, вероятно, осуществлялось также самоопыление. Обоеполость цветка способствовала самоопылению, поскольку приспособления к ограничению его еще не были развиты.

Разделение полов в цветке ограничивает или вполне исключает самоопыление. Оно привело к образованию разных половых типов цветковых растений.

Формы перекрестного опыления

В ходе эволюционной истории формы передачи мужских гамет развивались в таком порядке, при этом водные растения ( водоросли ), из которых развились сосудистые растения, были не пыльцой, а плавающими гаметами. В мха , в котором гаметы , передаваемые по воде, не пыльцы либо. Только семенные растения вырабатывали пыльцу в форме переноса пыльцы .

  • Абиотическое опыление
  • Биотическое опыление

Водоросли растут под водой

Количество пыльцы Dactylis glomerata

Pigeon хвост вставляет свой ствол в трубчатый цветок в георгин .

Колибри с фиолетовыми ушами

Летать на мухоморе

    • ( Вода ) гидрофильность
    • ( Ветер ) анемофилия
    • ( Животные ) зоофилия
    • (Человеческая) антропофилия

Опыление воды

Редкое опыление воды происходит у некоторых растений, которые растут под водой или на поверхности воды. Пыльца может переноситься над или под поверхностью воды.

Опыление ветром

При ветровом опылении пыльца передается ветром и случайно попадает на рыльце другого цветка.

У ветроопыляемых растений часто бывает незаметный цветочный покров или он полностью отсутствует. Нектар и отдушки не производятся. Цветки часто располагаются в многоцветковые, часто однополые соцветия . Обильное количество пыльцы часто образуется на длинных тычинках, движущихся на ветру. Цемент пыльцы обычно отсутствует. Шрамы большие и сильно разделенные.

Типичными ветровыми опылителями являются травы , пшеница , рожь и кукуруза . Пыльца ветроопыляющих растений может вызвать сенную лихорадку .

Опыление животными

Животные опыление подразделяются в зависимости от типа опыления животных: наиболее часто встречающихся животными опыления насекомыми. Когда опыление насекомыми можно дифференцировать с помощью Fliegenblütigkeit , Bienenblütigkeit , Tagfalterblütigkeit и других.

В тропиках важно опыление птицами, равно как и опыление летучими мышами. Цветки, опыляемые птицами, так называемые птичьи цветы , часто имеют ярко-красный цвет, одноцветные

насекомые не видят.

Способы, которыми растения привлекают своих опылителей, разнообразны. Многие из опыляемых насекомыми растений опыляются насекомыми, пьющими нектар и / или собирающими пыльцу, такими как пчелы , шмели , бабочки или журчалки . Животных обычно привлекает большой и ярко окрашенный цветочный покров . Часто цветок оформлен дорсивентрально . Если присутствуют нектар и ароматы, говорят о цветках нектара . Пока животные собирают нектар, их присыпают пыльцой. Если они летят к следующему цветку, пыльца прилипнет к их рыльцу. Цветущие растения без нектара и отдушек называют цветками пыльцы . При адаптации к опылению насекомыми тычинки часто короче, а рыльце не очень разделено.

Относительно основных опылителей у растений развились определенные приспособительные характеристики:

Нектар растений, опыляемых бабочками , часто находится на дне длинных трубок, в которые бабочки вставляют свой хоботок. Если моль — главные опылители, цветы часто раскрываются только вечером. Такие цветы обычно не бросаются в глаза, но обладают интенсивным ароматом.

У растений, опыляемых преимущественно мухами, преобладают мелкие нектарники . Здесь характерен характерный грибной или падалный запах .

В частности , орхидеи разработали специальные механизмы для привлечения насекомых-опылителей. Некоторые виды не дают нектара, а имитируют форму и цвет прицветников, цветов других растений, дающих нектар. Некоторые виды орхидей привлекают самцов определенных видов насекомых феромонами и побуждают их к совокуплению (например, виды амброзии ) → обманчивый цветок .

У цветов-ловушек для чайников есть, например, Aristolochia , Yellow Lady’s Slipper и Arum . Из-за особой структуры цветка мелкие насекомые попадают в чашеобразное расширение цветка или, в случае арума, на покров и могут покинуть его только через такие устройства, как ловушка для волосков, когда произошло опыление.

Искусственное опыление (человек)

Чтобы предотвратить нежелательное случайное опыление при селекции растений , существуют методы искусственного опыления. Для этого пыльцу выбранного родительского растения можно перенести, например, с помощью тонкой кисти на рыльце цветка выбранного родительского растения. Грегор Мендель уже использовал этот метод в своих экспериментах по разведению цветковых растений. Мендель удалил тычинки на ранней стадии, чтобы исключить нежелательное самоопыление или случайное перекрестное опыление, и он мог быть уверен, что потомство происходит от выбранных родительских растений.

Искусственное опыление огурцов и других тыквенных ↑

Семейство тыквенных культур, в том числе и огурцы, относятся к группе однодомных растений. Мужские и женские цветки развиваются на одном растении. Различить их очень просто. Женские цветки у основания имеют зачаток зародыша, а мужские тонкую цветоножку. При наступлении цветения вначале распускаются мужские цветки, а затем женские. Пыльца тяжелая, липкая. Перенести ее на другой цветок по силам только насекомым (пчелам).

Поэтому при выращивании сортовых огурцов, требующих опыления (в отличие от партенокарпиков, формирующих урожай без опыления), иногда применяют искусственное опыление. Цель искусственного опыления: увеличение урожайности, самостоятельное получение семян желаемого сорта при возделывании нескольких сортов без соблюдения пространственной изоляции (на даче все рядом).

Мужские и женские цветки огурцов

Для увеличения урожайности ↑

Чтобы увеличить урожай огурцов при выращивании в открытом грунте, при наступлении аномально высокой сухой погоды, достаточно утром (до резкого повышения температуры) со свежераспустившихся мужских цветков, ватой навернутой на спичку, собрать пыльцу нескольких растений и прикоснуться к рыльцу пестика женских цветков

Можно эту операцию выполнить кисточкой (лучше беличьей) или просто сорвать мужской цветок, убрать венчик и осторожно прикасаться пыльниками (тычинками) к рыльцам пестиков женских цветков. Один мужской может успешно опылить 3-4 женских цветка

Проводят (при необходимости) ручное опыление ежедневно до отцветания.

Для получения семян определенного сорта ↑

В этом случае в домашних условиях искусственное опыление проводят немного по-другому, особенно, если рядом растут несколько сортов, а нужны семена одного.

Искусственное опыление огурца

Чтобы провести искусственное опыление, выделяют на кусте женские и мужские бутоны и изолируют их от окружающей среды. Изоляторы используют различные: из ваты, плотной, но легкой натуральной материи, бумажного колпачка и других материалов, которыми обволакивают цветок, чтобы не проникла чужая пыльца или насекомое. Обычно эту процедуру проделывают за сутки до распускания цветка. Мужских цветков изолируют в 2-3 раза больше, чем женских. Можно потом приготовить смесь пыльцы одного растения и наносить кисточкой на рыльце пестика или по очереди прикладывать к женскому цветку 2-3 мужских. Через 24 часа после изоляции бутонов, мужские цветки срывают, подносят к женскому цветку, потом снимают изолятор, обрывают венчик и прикладывают к рыльцу пестика. Проводят процедуру утром (время распускания венчика) в сухую солнечную безветренную погоду (не позже 11-12 часов дня). Опыленные цветки обязательно нужно пометить, чтобы не убрать вместе с обычным урожаем. Семенники убирают при полном пожелтении, дозаривают в помещении и после размягчения приступают к выделению семян.

Образование семян

После оплодотворения внутри зародышевого мешка начинается быстрое митотическое деление триплоидного вторичного ядра, не имеющего периода покоя. Образуется большое количество ядер, затем между ними возникают, перегородки.

Эти вновь образовавшиеся клетки продолжают деление, заполняя всю полость зародышевого мешка питательной тканью — эндоспермом, который у одних растений полностью расходуется во время развития зародыша (бобовые, тыквенные), а у других — сохраняется в зрелых семенах (злаки). Одновременно происходит разрастание зародышевого мешка и семяпочки.

Формирование зародыша начинается с деления зиготы. После периода покоя зигота делится митотически на две клетки. Верхняя клетка, прилегающая к пыльцевходу, образует подвесок, отодвигающий нижнюю клетку в глубь эндосперма. Подвесок у одних видов растений остается одноклеточным, у других — делится поперечными перегородками и становится  многоклеточным. Нижняя клетка разрастается в предзародыш семени сферической формы. Предзародыш делится на 4 клетки двумя перпендикулярными перегородками, затем каждая из этих клеток делится еще на две.

Сначала клетки более или менее однородны. По мере дальнейшего деления происходит дифференцировка клеток на зачаточный корешок, зачаточный стебель, зачаточные листочки (семядоли) и зачаточную почечку, окруженную семядолями. К этому времени семяпочка превращается в семя, ее покровы и остатки эндосперма образуют кожицу семени.

Таким образом, из оплодотворенной диплоидной яйцеклетки формируется зародыш семени, а из вторичной триплоидной клетки — питательная ткань — эндосперм, покровы семязачатка превращаются в покровы семени, а стенка завязи, разрастаясь, образует околоплодник.

Техника опыления полевых культур ↑

Подсолнечник, кукуруза, зерновые составляют группу полевых культур. Очень часто из-за погодных условий культуры теряют до 50% урожая, и спасти его может искусственное опыление. В отличие от овощных, процедура искусственного опыления в этом случае очень проста. Как, правило, полевые культуры – ветроопыляемая группа растений. Значит, им необходима при искусственном опылении имитация ветра. При неполноценном опылении обычно середина соцветия заполнена пустыми семенами. В полевых условиях на больших площадях приспособились использовать вертолеты. Пролетая на определенной высоте над полями, они создавали потоки ветра, способствующие опылению.

Подсолнух

На придомовом участке достаточно при полном раскрытии соцветий подсолнечника прикоснуться корзинками разных растений друг к другу. Корзинки 1-3 раза слегка прижимают друг к другу. Кстати, эту процедуру в колхозах тоже проделывали на полях вручную.

При цветении кукурузы в безветренную погоду нужно пройти по участку и слегка встряхнуть растения. Мужские соцветия распылят пыльцу, которая достигнет в большем количестве рылец пестика. В колхозах протягивали 2 человека веревки определенных размеров по верхушкам растений, позже тоже использовали вертолеты.

Особенности анемофильных растений

Для всех представителей этой группы характерны такие признаки:

  • невзрачные или малозаметные цветки (объясняется тем, что они не должны привлекать насекомых);
  • маленькие и сухие пыльцевые зерна;
  • большая длина нитей, на которых свисают пыльники.

Теперь подробнее. Главная особенность всех ветроопыляемых культур – это непривлекательность цветков, проявляющаяся в отсутствии нектара, запаха и ярких красок. При этом пыльцевые зерна, которые развиваются в больших количествах, имеют чрезвычайно малые размеры: вес одной пылинки в среднем составляет 0,000001 мг. Приведем небольшое сравнение: пылинка тыквы – растения, опыляемого пчелами – весит в тысячу раз больше, т. е. порядка 0,001 мг. Одно только соцветие конского каштана способно сформировать 42 миллиона зерен, в то время как соцветие ржи – в десять раз меньше (4 миллиона 200 тысяч). К особенностям пыльцы анемофильных растений можно отнести еще и то, что она, будучи полностью лишенной клеящих веществ, зачастую еще и имеет гладкую поверхность.

Конский каштан

Примеры в окружающей природе

От опыления зависит сохранение вида, поэтому так важно, чтобы всё проходило успешно. Растения, в отличие от животных, не могут самостоятельно передвигаться в поисках партнёра для размножения и вынуждены уповать на помощь союзников — ветра, воды или живых существ

Самоопыляющимся растениям присущи следующие отличительные признаки:

  • цветки не имеют запаха и не выделяют нектара;
  • пестики располагаются ниже тычинок;
  • пыльца созревает ещё на стадии бутонизации, и опыление осуществляется в нераспустившемся цветке, как у гузмании или арахиса.

Томаты «умеют» самоопыляться факультативно: их тычинки оказались сросшимися, поэтому пестик без труда оплодотворяется своей пыльцой. Малопрогрессивному потомству, полученному таким образом, угрожает вырождение. Этого не случится, если некоторые цветки подвергнутся внутривидовому опылению и приобретут несколько иные родительские зачатки. Тогда они будут обладать более высокими способностями к приспособлению и выживут в процессе естественного отбора.

Мужские деревья двудомных тополя и облепихи интересны только цветками с пыльцой, а женские особи плодоносят. В случае тополя пушистые семена — продукт жизнедеятельности женских деревьев. Если высаживать для озеленения исключительно мужские черенки, можно навсегда избавиться от надоедливого пуха. Оранжевые плоды облепихи дают только женские кусты, но если рядом не посадить мужское растение, то урожая не будет, а обычное соотношение составит 10:1.

Однополые цветки однодомной кукурузы собраны в разнотипные соцветия: мужские — «метёлка» на макушках, женские — «початок» в листовых пазухах. Другие характерные представители однодомных — тыква и огурец — тоже образуют цветки разного типа в пределах одного растения. По внешним признакам они почти неотличимы, но после опыления мужские сразу отмирают и осыпаются, а из оплодотворённых женских будут формироваться завязи.

Влияние внешних факторов на определение пола у растений

Многочисленные факты свидетельствуют о влиянии на проявление признаков пола у растений таких внешних воздействий, как влажность почвы и воздуха, температура, спектральный состав света, условия минерального питания. Так, появлению женских цветков и формированию женских растений у двудомных видов способствуют низкие температуры, высокая влажность, хорошее азотное питание. Появлению мужских цветков — высокие температуры, низкая влажность, калийное питание. Определение пола зависит также от длины дня. Доказано, что короткий день приводит к появлению большего количества женских особей. Длинный световой день действует противоположным образом.

Возможная долгосрочная польза от мейоза

Мейоз, за ​​которым следует самоопыление, вызывает незначительную общую генетическую изменчивость. Это поднимает вопрос о том, каким образом мейоз у самоопыляющихся растений адаптивно поддерживается в течение длительных периодов (то есть примерно в течение миллиона лет или более, как в случае A. thaliana ), а не менее сложному и менее дорогостоящему бесполому амейотическому процессу для производят потомство. Адаптивным преимуществом мейоза, которое может объяснить его долгосрочное поддержание у самоопыляющихся растений, является эффективная рекомбинационная репарация повреждений ДНК. Это преимущество может быть реализовано в каждом поколении (даже если генетическая изменчивость не возникает).

Перенесение пыльцы с цветка одного растения на цветки другого называется перекрестным опылением.

Характерна, к примеру, для родов Гречиха (Fagopyrum), Медуница (Pulmonaria), Первоцвет (Primula). М.: Просвещение, 1980. — Т. 5. Ч. 1. Цветковые растения. Суриков И. М. Несовместимость и эмбриональная стерильность растений. Они обусловлены строением и физиологическими особенностями цветков.

Собирая пищу, пчелы вошли в тесную связь с растениями и приносят им огромную пользу. 3. Сладкий сок нектар, расположенный в глубине цветка и вырабатываемый особыми железками — нектарниками. 4. Аромат цветков усиливается в большинстве случаев к ночи. Такие цветки опыляются ночными бабочками. 5. Цветки мелкие, невзрачные, обычно собраны в соцветия, не издают запаха. 7. Крупные и пушистые рыльца, как и тычинки, высовываются из цветка.

Искусственное опыление пыльцой другого вида или сорта называется скрещиванием. У самоопылителей и тычинки, и пестики на одном цветке созревают одновременно. 2. Изучение человеком механизма опыления позволяет управлять этим процессом. Анемофилия. Анемофильными являются, по-видимому, около 1/10 всех покрытосеменных растений. У берегов Скандинавии ловили пыльцу хвойных, березы и др. на судах, находившихся за 30-55 км от берега.

Энтомофилия. Для энтомофильных растений характерен ярко окрашенный венчик или венчиковидный околоцветник, делающий их издали заметными для насекомых. У некоторых сложноцветных (ромашки, маргаритка и др.) краевые цветки корзинки иначе окрашены, чем центральные, и благодаря такой контрастности соцветие становится еще заметнее.

Окраска и запах лишь указывают насекомому, куда ему лететь. У большинства энтомофильных растений главной приманкой для насекомых является нектар, хотя, конечно, у многих из них поедается частично и пыльца. Нектарники обычно расположены так, что, добираясь до них, насекомое касается тычинок и рыльца. Обычно в зависимости главным образом от расположения нектарников цветки определенного строения могут опыляться теми или иными группами насекомых.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector