Транспирация: суть процесса, схема, скорость и значение в жизни растений
Содержание:
Процессы передвижения воды
Как мы уже выяснили, транспирация – естественный физиологический процесс в растительном мире.
Главный ее орган – лист. Поскольку листьев у растений много, они образуют достаточно большую площадь для испарения. В результате водный потенциал уменьшается, а это сигнал для клеток листьев к поглощению воды из ксилемных жилок. По принципу падающего домино следом провоцируется движение воды из корней по ксилеме к листьям. Образуется нечто сродни верхнему конечному двигателю. И чем активнее транспирация, тем мощнее верхний «двигатель», и тем сильнее всасывающая сила «двигателя» нижнего – корневой системы.
Из стебля вода движется в листок, проходя по жилкам через черешок. По дороге жилки «разбегаются», число проводящих элементов становится меньше. Сами жилки превращаются в отдельные трахеиды, которые образуют очень густую сеть. Задерживают влагу в листе однослойный эпидермис с кутикулой на его поверхности. Превратившаяся в пар вода выходит сквозь устьица – специальные многочисленные отверстия микронных размеров, которые растение в состоянии расширять или сужать в зависимости от внешних условий.
Испарение в жизни
И действительно: чего в этой жизни только не испаряется — мы встречаемся с этим каждый день. Давайте узнаем, зачем этот процесс вообще нужен, и как люди научились извлекать из него пользу.
Испарение в организме человека и животных
Выше мы разбирали вопрос, почему если облиться теплой водой, нам все равно станет холодно. По этому же принципу работает ощущение холода после того, как мы вспотели — в какой-то момент нам становится холодно.
Само потоотделение — важный процесс терморегуляции организма. Если мы достигаем высокой температуры (из-за внешних воздействий или же из-за болезни), то организм стремится себя охладить, чтобы не умереть из-за превращения белков в нашем организме в яичницу.
Пот выделяется через поры кожи, а затем испаряется — все это позволяет нашему организму быстро избавиться от лишней энергии, охладить тело и нормализовать температуру.
При высокой влажности холод и тепло воспринимаются более чувствительно. Это связано с потливостью человека при высокой температуре. Такой механизм помогает нам бороться с жарой и «скинуть» избыточное тепло, но при высокой влажности пот не может испариться. При низкой влажности происходит нечто похожее. Как ни странно, в мороз мы тоже потеем (намного меньше, но все-таки это происходит). Если влажность на улице низкая, то пот испарится из-под куртки и нам будет комфортно. А при высокой влажности — он там задержится и будет проводить тепло наружу, забирая у нас драгоценные Джоули тепла. Поэтому зимой в Петербурге холоднее, чем в Москве. |
У животных этот механизм работает схожим образом. Но, например, собакам испарения с кожи недостаточно, поэтому они часто открывают пасть, высовывают язык и дышат порой ну очень смешно
Именно гортань и язык собаки идеально подходят для испарения влаги и охлаждения тела животного.
Испарение у растений
Удивительно, но у растений механизм испарения тоже работает схожим образом. Растения очень любят воду, поэтому домашние растения мы поливаем, а в пустынях их просто нет.
Ту воду, которую цветы поглотили, они могут испарять, чтобы не перегреться под жарким солнцем. Да, вода нужна, чтобы растения питались, но в жаркие дни еще и для температурной саморегуляции. Поэтому не забывайте поливать цветы, а в очень жаркие дни делайте это еще интенсивнее.
Испарение в природе и окружающей среде
Процесс испарения напрямую связан с круговоротом воды в природе. Именно круговоротом воды в природе обеспечивается жизнь на Земле — так как влага разносится по всему миру, растения в дикой природе способны жить без наших попыток полить большую пальму из леечки.
Испарение воды с поверхности рек, озер, морей и океанов создает дождевые тучи, которые затем, проливаясь дождем, поливают растения и деревья. Многие дождь не любят, мол, он мокрый, мерзкий и затекает в ботинки, но он очень нужен засушливым регионам — Северной Африке или Центральной Индии, которые часто страдают от засухи.
Испарение в промышленности и быту
С бытом совсем все просто: мы сушим вещи, готовим еду, покупаем увлажнители воздуха или размазываем разлитую лужу по полу.
В случае с промышленностью для нас все не так очевидно. Промышленная техника, работающая на основе испарения, разрабатывается по схожей схеме: в ней всегда максимально увеличена площадь поверхности жидкости, чтобы испарение шло интенсивно.
Например, испаритель, изображенный на схеме, состоит из совокупности соединенных между собой испарителей. В основе его действия — пар, полученный в одной ступени, который используют в качестве источника тепла для следующей ступени. По мере того, как температура уменьшается от одной ступени к другой, вакуум увеличивается, так что температура кипения становится ниже и испарение поддерживается. Он предназначен для того, чтобы очистить воду от отходов.
Понимать и любить этот мир проще, когда разбираешься в физике. В этом помогут небезразличные и компетентные преподаватели детской школы Skysmart.
Чтобы формулы и задачки ожили и стали более дружелюбными, на уроках мы разбираем примеры из обычной жизни современных подростков, Приходите на бесплатный вводный урок по физике и начните учиться в удовольствие уже завтра!
Лист как орган транспирации
Что такое транспирация мы разобрали. Теперь следует понять, какую роль в данном механизме играет лист.
Благодаря большой площади испарения, главными диффундирующими участками растения являются листья. Процесс испарения влаги начинается с нижней части листа через раскрытые устья, через которые и осуществляется обмен кислородом и углекислым газом между растением и окружающим воздухом.
Механизм раскрытия устьиц заключается в следующем:
По окружности устий расположены замыкающие клетки.
При увеличении объема они растягивают отверстия в эпидермисе, увеличивая раскрытие устьиц.
Обратный процесс происходит при уменьшении объема замыкающих клеток, стенки которых перестают воздействовать на устьичные щели.
Функция Транспирации
Транспирация происходит потому, что растения потребляют больше воды, чем им нужно в данный момент времени. Это способ избавиться от лишней воды. Когда вода удаляется с завода, она может легче получить доступ к углекислому газу, в котором она нуждается фотосинтез, Кроме того, растения могут использовать транспирацию как метод охлаждения.
Транспирация используется для описания специфического действия воды, испаряющейся из растения, но слово транспирация также используется для описания того, как вода движется через растения. Когда вода проникает в растение через корни, она вытягивается через ксилема ткань в стволе растения к листьям растения за счет капиллярного действия и сплоченности молекул воды. Когда вода достигает устьиц, которые представляют собой небольшие отверстия в листьях, она испаряется из-за диффузия ; содержание влаги в воздухе ниже, чем влага в лист Таким образом, вода естественным образом вытекает в окружающий воздух для выравнивания концентраций.
Транспирация имеет побочные эффекты для других организмов в экосистема, Это помогает поддерживать определенный уровень влажности в окружающей среде, в зависимости от количества и типов растений в окружающей среде. Это непреднамеренно позволяет некоторым организмам выживать лучше, чем другие, в зависимости от уровня влажности, который им необходим для процветания.
Описание процесса транспирации
На процесс транспирации существенное влияние оказывают несколько значимых факторов.
Факторы влияющие на процесс транспирации
Как было указано выше, интенсивность транспирации определяется в первую очередь степенью насыщенности водой клеток листа растения. В свою очередь, на это состояние главное воздействие оказывают внешние условия – влажность воздуха, температура, а также количество света.
Понятно, что при сухом воздухе процессы испарения происходят более интенсивно. А вот влажность почвы действует на транспирацию обратным образом: чем суше земля, тем меньше воды попадает в растение, тем больше ее дефицит и, соответственно, меньше транспирация.
При повышении температуры также увеличивается транспирация. Однако, пожалуй, основной фактор, влияющий на транспирацию, – это все же свет. При поглощении листовой пластиной солнечного света увеличивается температура листа и, соответственно, раскрываются устьица и повышается интенсивность транспирации.
Знаете ли вы? Чем больше хлорофилла в растении, тем сильнее свет влияет на процессы транспирации. Зеленые растения начинают испарять влагу почти в два раза больше даже при рассеянном свете.
Исходя из влияния света на движения устьиц даже выделяют три основные группы растений по суточному ходу транспирации. У первой группы ночью устьица закрыты, утром они открываются и в течение светового дня двигаются, в зависимости от наличия или отсутствия дефицита воды. У второй группы ночное состояние устьиц является «перевертышем» дневного (если днем были открыты, ночью закрываются, и наоборот). У третьей группы днем состояние устьиц зависит от насыщенности листа водой, но ночью они всегда открыты. В качестве примеров представителей первой группы можно привести некоторые злаковые растения, ко второй относятся тонколистные растения, например, горох, свекла, клевер, к третьей – капуста и другие представители растительного мира с толстыми листьями.
Но в целом следует сказать, что ночью транспирация всегда менее интенсивна, чем днем, поскольку в это время суток температура ниже, света нет, а влажность, напротив, повышена. В течение светового дня транспирация обычно наиболее продуктивна в полуденное время, а со снижением солнечной активности этот процесс замедляется.
Отношение интенсивности транспирации с единицы площади поверхности листа в единицу времени к испарению такой же площади свободной водной поверхности называется относительной транспирацией.
Как происходит регулировка водного баланса
Основную часть воды растение поглощает из почвы посредством корневой системы.
Важно! Клетки корней некоторых растений (особенно произрастающих в засушливых регионах) способны развивать силу, с помощью которой высасывается влага из почвы, до нескольких десятков атмосфер!
Кроме корней, у некоторых растений есть способность поглощать воду и наземными органами (например, мхи и лишайники впитывают влагу всей своей поверхностью).
Поступившая в растение вода распределяется по всем его органам, двигаясь от клетки к клетке, и используется на необходимые для жизни растения процессы. Небольшое количество влаги уходит на фотосинтез, но большая часть необходима для поддержания наполненности тканей (так называемый тургор), а также восполнения потерь от транспирации (испарения), без которых жизнедеятельность растения невозможна. Влага испаряется при любом соприкосновении с воздухом, поэтому этот процесс происходит во всех частях растения.
Если количество воды, которое поглощается растением, гармонично согласовывается с ее расходованием на все указанные цели, водный баланс растения урегулирован правильно, и организм развивается нормально. Нарушения такого баланса могут быть ситуативными или длительными. С кратковременными колебаниями водного баланса многие наземные растения в процессе эволюции научились справляться, но длительные сбои в процессах водоснабжении и испарения, как правило, приводят к гибели любого растения.
Лист как орган транспирации
Что такое транспирация мы разобрали. Теперь следует понять, какую роль в данном механизме играет лист.
Благодаря большой площади испарения, главными диффундирующими участками растения являются листья. Процесс испарения влаги начинается с нижней части листа через раскрытые устья, через которые и осуществляется обмен кислородом и углекислым газом между растением и окружающим воздухом.
Механизм раскрытия устьиц заключается в следующем:
По окружности устий расположены замыкающие клетки.
При увеличении объема они растягивают отверстия в эпидермисе, увеличивая раскрытие устьиц.
Обратный процесс происходит при уменьшении объема замыкающих клеток, стенки которых перестают воздействовать на устьичные щели.
Проект: «Транспирационный эксперимент»
Растения потеют? Не совсем, но они теряют воду. Подсчитайте недостающую массу с помощью этого эксперимента, узнав, как растения испаряют воду через транспирацию.
Что нам понадобится:
- три небольших тонколистных растения;
- три небольших широколистных растения;
- маленькая лейка;
- линейка;
- 6 пластиковых пакетов, достаточно больших, чтобы полностью покрыть горшок с растением;
- малярный скотч.
Ход эксперимента:
- Возьмите шесть маленьких растений, три с широкими листьями и три с узкими листьями. Используйте малярный скотч и ручку, чтобы написать на каждом растении его номер.
- Поливайте растения, пока вода не будет выливаться из нижней части горшка. Если растения очень сухие или сухая почва, то их тщательно полейте и подождите несколько минут. Затем полейте их снова. Когда вода впитается и горшок наполнится водой, а почва будет мягкая как губка — самое время взвесить растения. Нарисуйте таблицу, которая показывает, сколько весит каждое растение до и после эксперимента.
Название растения | Вес До | Вес После |
№ 1 (Тонкий лист) |
- Создайте гипотезу, обратившись к этим вопросам:
- Если вы поливаете растения, а затем ставите их на солнце, что будет с водой?
- Изменится ли что-нибудь, если вы обернете пластиковым пакетом вокруг основания растения?
- Как добавление пакета изменит ваш эксперимент?
- Поставьте растения на теплое солнце на час, надев на них пакеты, затем снимите их и снова взвесьте каждое растение. Запишите вес в таблицу. Вес отличается? Остался тем же? Почему вы думаете, что это так? Разные растения потеряли разное количество веса или потеряли примерно одинаковое количество? Почему?
- Высушите изнутри каждый пластиковый пакет. Повторно запечатайте их на растениях, верните растения в солнечное место и продолжайте измерять и взвешивать в течение нескольких часов, не добавляя больше воды. Что происходит?
Вывод:
Во время эксперимента по транспирации растения будут терять воду, даже если они находятся в пакетах. Растения с широкими листьями потеряют немного больше воды, чем растения с тонкими листьями, но в зависимости от размера растения это может быть очень сложно измерить.
Почему?
Так как же вода выходит из растений?
В жаркий день, вы можете немного вспотеть. Растения также «потеют». Подобно тому, как мы теряем воду через нашу кожу, растения теряют воду через свои листья.
Хотя вы, возможно, не сможете их увидеть , на листьях растений есть маленькие поры или отверстия. Взгляните на обратную сторону листа под микроскопом, и вы сможете увидеть эти отверстия, которые называются устьицами. Вот, где растения могут терять воду в результате транспирации.
Несмотря на то, что это невидимый процесс, потеря воды из растений в результате транспирации является важной частью круговорота воды, потому что она добавляет много воды в наш воздух. Всего за один год каждый лист на земле может отдать воды весом намного больше своего собственного. Фактически, большой дуб может давать воздуху больше 150000 литров воды в год!
Фактически, большой дуб может давать воздуху больше 150000 литров воды в год!
Вы, вероятно, поливаете растения в своем доме, чтобы они оставались здоровыми — и, если растениям нужна вода, то почему они ее теряют? Транспирация происходит отчасти потому, что растения должны дышать. Растения должны поглощать углекислый газ, и для этого им нужно открыть свои устьица. Когда это происходит — выходит вода. Вы, вероятно, испытывали это и во время своего собственного дыхания: в холодный день вы даже можете видеть воду от своего дыхания, которая создает облачка в воздухе.
Транспирация также помогает растениям, охлаждая их, подобно тому, как пот помогает нам регулировать температуру нашего тела. Транспирация также играет большую роль, помогая воде перемещаться вокруг растения, изменяя давление воды в клетках растения. Это помогает минералам и питательным веществам подниматься вверх от корней растения.
Дальнейшее исследование:
Что будет с растением, если вы обмажете вазелином его листья? Как насчет оливкового масла? Попробуйте смазывать различными веществами листья и взвешивать растение, затем повторите эксперимент. Что будет происходить в теплой комнате? Транспирация будет выражена больше или меньше?
Что такое транспирация
Транспирация – это регулируемый физиологический процесс движения воды по органам растительного организма, завершающийся ее потерей через испарение.
Знаете ли вы? Слово «транспирация» происходит от двух латинских слов: trans – через и spiro – дыхание, дышать, выдыхать. Дословно термин переводится как выделение пота, потение, испарина.
В процессе этого движения большая часть влаги теряется (испаряется), особенно при ярком свете, сухом воздухе, сильном ветре и высокой температуре.
Таким образом, под влиянием атмосферных факторов запасы воды в надземных органах растения постоянно расходуются и, следовательно, должны все время пополняться за счет новых поступлений. По мере испарения воды в клетках растения возникает некая сосущая сила, которая «подтягивает» воду из соседних клеток и так по цепочке – до самых корней. Таким образом, главный «двигатель» тока воды от корней к листьям находится именно в верхних частях растений, которые, говоря упрощенно, работают как маленькие насосы.
Если вникнуть в процесс чуть глубже, то водный обмен в жизни растений представляет собой следующую цепочку: вытягивание воды из почвы корнями, подъем ее к надземным органам, испарение. Эти три процесса находятся в постоянном взаимодействии. В клетках корневой системы растения образуется так называемое осмотическое давление, под воздействием которого находящаяся в почве вода активно всасывается корнями.
Когда в результате появления большого количества листьев и повышения температуры окружающей среды вода как бы начинает высасываться из растения самой атмосферой, в сосудах растений возникает дефицит давления, передающийся вниз, к корням, и подталкивающий их к новой «работе». Как видим, корневая система растения тянет воду из почвы под воздействием двух сил – собственной, активной и пассивной, передающейся сверху, которая и вызывается транспирацией.
Кавитация
Чтобы поддерживать градиент давления, необходимый для того, чтобы растения оставались здоровыми, они должны постоянно поглощать воду своими корнями. Они должны быть в состоянии удовлетворить потребности в воде, потерянной из-за испарения. Если растение не может принести достаточно воды, чтобы оставаться в равновесии с транспирацией, происходит событие, известное как кавитация . Кавитация — это когда растение не может обеспечить свою ксилему достаточным количеством воды, поэтому вместо того, чтобы заполняться водой, ксилема начинает заполняться водяным паром. Эти частицы водяного пара собираются вместе и образуют засоры в ксилеме растения. Это не позволяет растению транспортировать воду по своей сосудистой системе. Нет очевидной картины того, где кавитация возникает по всей ксилеме растения. Если не принять эффективных мер по уходу, кавитация может привести к тому, что растение достигнет точки постоянного увядания и погибнет. Следовательно, у растения должен быть метод, с помощью которого можно удалить эту кавитационную закупорку, или он должен создать новое соединение сосудистой ткани по всему растению. Растение делает это, закрывая устьица на ночь, что останавливает поток транспирации. Это затем позволяет корням создавать давление более 0,05 МПа, и это способно разрушить закупорку и наполнять ксилему водой, повторно соединяя сосудистую систему. Если растение не может создать достаточное давление, чтобы устранить засорение, оно должно предотвратить распространение засора с помощью груши, а затем создать новую ксилему, которая может повторно соединить сосудистую систему растения.
Ученые начали использовать магнитно-резонансную томографию (МРТ) для неинвазивного мониторинга внутреннего состояния ксилемы во время транспирации. Этот метод визуализации позволяет ученым визуализировать движение воды по всему растению. Он также способен видеть, в какой фазе находится вода в ксилеме, что позволяет визуализировать события кавитации. Ученые смогли увидеть, что в течение 20 часов солнечного света более 10 сосудов ксилемы начали заполняться частицами газа, становящимися кавитацией. Технология МРТ также позволила увидеть процесс восстановления этих ксилемных структур на заводе. После трех часов нахождения в темноте было замечено, что сосудистая ткань пополнилась жидкой водой. Это стало возможным, потому что в темноте устьица растения закрыты и транспирация больше не происходит. Когда транспирация прекращается, кавитационные пузыри разрушаются давлением, создаваемым корнями. Эти наблюдения предполагают, что МРТ способны контролировать функциональное состояние ксилемы и позволяют ученым впервые просматривать события кавитации.
Суточный ход транспирации
В течение суток уровень испарения влаги у растений меняется:
- Ночью, процесс водообмена между растением и окружающим воздухом практически останавливается. Это обусловлено отсутствием солнца, закрытием отверстий эпидермиса, снижением температуры атмосферного воздуха и увеличением уровня его влажности.
- На рассвете, устья открываются. Степень их раскрытия увеличивается с изменением освещенности, климатических и физических показателей воздушных масс.
- Максимальная интенсивность транспирации у растений наблюдается в полдень, к 12-13 часам. На данный процесс влияет напряженность солнечного света.
- При недостаточной влажности в дневной период, интенсивность водообмена может снижаться. Этот механизм позволяет растению значительно сократить потерю влаги, защитив себя от увядания.
- При снижении солнечной инсоляции в вечерние часы интенсивность транспирации вновь возрастает.
Суточный процесс влагообмена также зависит от вида и возраста растений, региона произрастания, схемы расположения листьев.
У кактусов, повышение уровня транспирации происходит исключительно ночью, когда устья полностью раскрыты. У растений, листва которых повернута боковой частью к горизонту, данный процесс начинается непосредственно с первыми лучами солнечного света.
Определение транспирации в биологии — видео
https://youtube.com/watch?v=f0MoAb0XMEs
http://www.lineyka.net/raboty-na-dache/transpiracija-u-rastenij-sutochnyj-hod.htmlhttp://studopedia.ru/5_97143_transpiratsiya-ee-znachenie-list-kak-organ-transpiratsii-vidi-transpiratsii-ee-pokazateli-sutochniy-hod-transpiratsii-vliyanie-vneshnih-uslovii.htmlhttp://glav-dacha.ru/transpiraciya-u-rasteniy/
Испарение: что это за процесс
Процесс перехода из жидкого состояния в газообразное называется парообразованием. У этого процесса есть две разновидности: испарение и кипение.
Например, мы заварили себе горячий чай. Над чашкой мы точно увидим пар, так как вода только что поучаствовала в процессе кипения.
Подождите-ка, мы ведь только что сказали, что кипение и испарение — разные вещи. Это действительно так, при этом эти два процесса могут происходить параллельно.
- Испарение — это превращение или переход жидкости в газ (пар) со свободной поверхности жидкости. Если поверхность жидкости открыта и с нее начинается переход вещества из жидкого состояния в газообразное, это будет называться испарением.
- Кипение — процесс интенсивного парообразования, который происходит в жидкости при определенной температуре.
Испарение может происходить и без кипения, просто тогда оно не будет для нас заметно. Например, вода в озере испаряется, хотя мы этого и не замечаем. Кипение по сути своей — это интенсивное испарение, которое вызвали внешними условиями — доведя вещество до температуры кипения.
Физика объясняет испарение тем, что жидкость обычно несколько холоднее окружающего воздуха — из-за разницы температур происходит испарение. Как будто бы это фазовый переход, о котором мы говорим в статье об агрегатных состояниях .
Если нет каких-то внешних воздействий, испарение жидкостей происходит крайне медленно. Молекулы покидают жидкость из-за явления диффузии.
Интересно то, что направление тепловых потоков при испарении может идти в разной последовательности и комбинациях:
|
Подытожим, чтобы не запутаться: в чем главная разница между испарением и кипением:
Испарение | Кипение |
При любой температуре, с поверхности жидкости | При определенной температуре, во всем объеме жидкости |